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Summary

• Theoretical calculations of wake fields and
impedance.

• Bench measurements (RTA, SPEAR3).

• Single-bunch wake fields effects
(Femtosource).

• Coupled-bunch instabilities (NLC DRs).

Wake fields (= impedance via Fourier transform), describe the
interaction between beam and accelerator.
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Coaxial Wire Method

Measured S21 has to be corrected for phase delay and effects of tapers/absorbers. This is usually
done remeasuring S21 with a reference tube of the same length in place of the component.

Critical factors:
- tapers
- HOMs
- absorbers
- matching network
- wire sagging
- wire diameter
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Formulas Used in Longitudinal
Impedance Measurements

  

"Short" objects (with respect to ) :

"Long" objects :

    (Hahn - Pedersen and Sands - Rees)

   (Walling or log)
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   (Improved log)

It can be demonstrated the, in principle, with this method one can exactly
measure the impedance of the component under test with the coaxial wire
inside.
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Coaxial Wire Measurements and the
Modified Bethe’s Diffraction Theory

• To what extent does the coaxial wire perturb
the measurement ?

• The Modified BDT (originally developed to
calculate impedances theoretically) can help
by calculating theoretically the measurement
result and comparing it to the theoretical value
of the impedance.
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Modified Bethe’s Diffraction Theory - A Primer

beam

beam
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Modified BDT
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The equivalent dipole moments are a function of the static polarizability tensors 
and of the scattered fields. 
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The scattered fields are themselves a function of the equivalent dipole moments. 
This allows to obtain the equivalent dipole moment by solving a linear system: 
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The coefficients matrix [S] is a function of the modes chosen to represent the
electromagnetic fields. Its expression is particularly simple in the low frequency
approximation, when only one propagating mode is used.
The terms outside the principal diagonal represent coupling between apertures.
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Modified BDT (cont.)

GEOMETRICAL MODEL:

The impedance can be directly calculated using the modified Bethe’s diffraction theory:
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Mod. BDT applied to the experimental set-up

Using BDT we can calculate
the S21, as it would be ideally
measured, and use this value in
the various formulas:
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• Measured impedance is bigger than the actual one (d>b)

• ZHP is always closer to actual value than ZSR.

• But ZSR can be corrected more easily (difference does not
depend on α∗’s).

• Same conclusions for distributed impedances. Theoretical
value obtained through Differential Modified BDT,
compared to Zlog. Factor ln(d/s)/ln(b/s) is the same.

Results (real impedance)

Re(Z//)=Re(ZSR) ln(b/s)/ln(d/s)
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The SPEAR 3 Injection Kicker

Length: 890 mm Gap dimensions: 60 x 34 mm
Cut-offs: 2.5 GHz (TE)

5.0 GHz (TM)
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High impedance mode at
4.26 GHz (MAFIA).

Model run is much shorter
than actual kicker, but
frequency is dominated by
transverse dimensions and
should be the same.
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Measurements

• Coaxial Wire.
– Direct measurement of interaction with beam.

– Frequencies are shifted.

• Probe Measurements
– Actual frequencies and Qs measured.

– Can introduce spurious TEM-like modes.

– Can’t distinguish which resonances couple with beam.

• Perturbation Measurements
– Can measure R/Q.
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Longitudinal Impedance
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60

50

40

30

20

10

0

B
ea

m
 Im

pe
d

an
ce

 (Ω
)

54321
Frequency (GHz)

 kikr w/ term 2

 Resolution= 50 kHz



5/24/2002 Wake Fields, Impedance and Collective Effects S. De Santis

Longitudinal Impedance II:
what can go wrong
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Not-so-tight connections 
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 The 60 MHz ripple
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60 MHz ripple

Resonances spaced ~60 MHz are measured with the stripline 
connectors open (Q≈2000). From this measurement it is possible
to derive the Q factor of these resonances, when the connectors
are terminated using a transmission line model: 

Z0=80 Ω
ZL=0 (s.c.)
L=1.2 m

Z jZ Lin = 0 2tan( / )π λ

Reflection coefficient when connectors are
terminated on a 13.5 Ω line:
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Probe measurements

• Kicker resonances.
– Different probe shapes (straight, L-shaped, loops) and

positions.

• Resonances in outer kicker tank.
– Probes in outer tank.

• Best position for couplers.
– Coupling between coaxial wire and probes in outer

tank.
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Antennas Measurements I
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Antennas Measurements II
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Antennas Measurements III
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Antennas Measurements Legends
• I L-shaped and straight antennas coupling (mostly) to horizontal

and vertical E field. The mode at seem to have longitudinal E field on
axis.

• II The red trace is the coupling to the outer cylinder. Only one of
the two peaks at 967 MHz couples out (but this could be due to the
particular positions chosen). Also the mode at 1.03 GHz couples
weakly outside.

• III Shows different antennas positions inside the kicker gap: the
continuous trace is obtained with the probes laying on the walls, so that
a TEM mode is not supported. In this position though the longitudinal
E field is minimum. In the dashed trace the probes were raised up to
the kicker axis.
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HOM Dampers .5-1.5 GHz
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HOM Dampers 1.5-2.5 GHz
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Measured Modes
FREQUENCY [MHZ] Q FREQUENCY [MHZ] Q

760 600 1235 1800

964 600 1251 2100
1078 2400 1258 1400
1088 2600 1302 900
1108 3000 1380 900
1141 700 2335 5700
1180 400 2405 1100
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R/Q Measurements
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z (ins) z (m) fo (MHz) fp (MHz) delta-f sqr t (de l ta - f / f ) wz/c cos(wz/c) s in (wz /c ) z -par i t y sqrt (df / f )cos(wzsqr t (d f / f )s in (wz/c )
0 0 2425.5 2425.5 0 0 0 1 0 0 0 0

5.5 0.1397 2425.5 2425.33 0.17 0.008371896 7.096697583 0.686950289 0.726704411 1 0.005751076 0.006083894
10.5 0.2667 2425.5 2425.08 0.42 0.013159034 13.54824084 0.555468355 0.831537676 1 0.007309427 0.010942232
15.5 0.3937 2425.5 2425.44 0.06 0.004973647 19.9997841 0.408279159 0.912857124 1 0.002030637 0.004540229
20.5 0.5207 2425.5 2425.41 0.09 0.006091449 26.45132736 0.249544843 0.968363243 1 0.00152009 0.005898735
25.5 0.6477 2425.5 2424.99 0.51 0.014500549 32.90287061 0.08375402 0.99648646 1 0.001214479 0.014449601
30.5 0.7747 2425.5 2425.5 0 0 39.35441387 - 0 . 0 8 4 4 0 5 1 6 0.996431518 1 0 0
35.5 0.9017 2425.5 2425.36 0.14 0.007597372 45.80595713 - 0 . 2 5 0 1 7 7 5 7 0.968199971 1 - 0 . 0 0 1 9 0 0 6 9 0.007355775
40.5 1.0287 2425.5 2424.94 0.56 0.015194744 52.25750039 - 0 . 4 0 8 8 7 5 5 8 0.912590138 1 - 0 . 0 0 6 2 1 2 7 6 0.013866573
45.5 1.1557 2425.5 2425.2 0.3 0.011121413 58.70904364 - 0 . 5 5 6 0 1 1 6 1 0.831174527 1 - 0 . 0 0 6 1 8 3 6 3 0.009243836

4 9 1.2446 2425.5 2425.48 0.02 0.002871537 63.22512392 0.923660575 0.383211616 1 0.002652325 0.001100406
0 2425.5 2425.5 0 0 0 1 0 0 0 0

reversal at> 0
0.006180947 0.073481282 sum

7.8498E-05 0.000933212 sum * delta-z
epsilon= 9.3 RTT/Q= 5.50 6.16194E-09 8.70885E-07 (sum*dz)^2

8.77047E-07 cos^2 + sin^2 ter

bead pull data
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Excel spreadsheet used for the
R/Q calculations (courtesy of R. Rimmer)
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Conclusions

• Mode at 4.26 GHz not observed.
– Perhaps worth to check MAFIA w/ different length.

• Other modes below 2 GHz seem “external”.
– Measure of Ez not definitive, but R/Q below noise level.

• Mode at 2.4 GHz has low impedance.

• Best position for damper depends on mode.
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Betatron Node Scheme Experiment

• Exciting and measuring BBU growth and its
dependance on the betatron tune.

• Measuring the BPM response (transfer
impedance) .

• Measuring pillbox cavities frequencies.
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BNS Beamline
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BNS Pillbox Cavity and BPM Details
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Experimental Set-up

“Coaxial” wire technique for dipole modes
Transfer impedance (BPMs)

In this case matching is provided by hybrids, provided the two-wire line is
100 Ω (wire separation)
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Cavities resonances

The dielectric in some cavities was changed to reduce
the spread in the dipole frequencies.



5/24/2002 Wake Fields, Impedance and Collective Effects S. De Santis

Berkeley Femtosource

• Study of beam break-up (BBU) instability
and possible cures.

• Effects of linac misalignments, injection
jitter, short- and long-range wakefields were
taken into account.

• Femtosource linac has no focussing
elements -> analytical solution is possible.
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SC 600 MeV Linac
9-cell superconducting cavity for
TESLA: gradient Eacc=23 MV/mEacc 20 MV/m

Frequency 1.3 GHz
Operation mode CW
Quality factor 1x1010

RF power loss/cavity 42 W
Cavity length 1.038 m
Module length 12 m
Cavities/module 8
Beam current 0.04 mA
Beam power/cavity 800 W
Qbeam 6x108

Bandwidth 200 Hz
Qexternal 6.5x106

RF power/4 modules 540 kW
RF power loss/4 modules 1.3 kW
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Single-bunch BBU 1
Source: short range wake fields (transverse).
Effect: vertical emittance increase through variable displacement along the bunch.  

Transverse wake field for the RF cavities (from A. Mosnier): 
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Analytic fit:
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Single-bunch BBU 2
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Given our machine parameters, the first order solution is already good enough. 
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Single-bunch BBU 3
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The analytical results have been compared
to a tracking code output.
In the figure above, we assume no initial
angle error.
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effect on the displacement, which is
strongly affected by the bunch length
instead.

2.52 GeV



5/24/2002 Wake Fields, Impedance and Collective Effects S. De Santis

Main Linac Alignment

Main linac has 32 RF cavities divided in 4 cryomodules.

• Misalignments in RF Cavities: 500 µm rms value (from manifacturer, we can’t change it).

• Misalignments in cryomodules: 150 µm rms value (estimate from ALS data).
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Main Linac Alignment: Cures 1

  
y z y F W z y d d y Li

i i
i ci j mj

i

i

( ) ( , , ) ln ln= + − +


















+ +











+ ′ +





⊥ ∑∑0 0 01 1γ γ

γ
γ

γ
γ
γ

γ
γ

∆ ∆
∆

∆
F G

It is possible to cancel the displacement dependance on the particle position inside the
bunch (no tilt) by introducing an appropriate initial offset. This requires accurate BBU
measurement.

offset increases….tilt is canceled
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Main Linac Alignment: Cures 2
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of the first pass (there is no total
cancellation because of the
different energies).
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NLC DR Coupled-bunch Instabilities

• Growth rates calculated for:
– MDR and PDR.

– Longitudinal and transverse (w/ res. wall).

– 1.4 and 2.8 ns bunch spacing.

• How to study uneven fills.
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Fundamental Parameters

Circumference 299.792 m 230.933 m

Beap pipe radius 16 mm 32 mm

Wiggler total length 46.238 m 49.5 m

Wiggler half-gap 8 mm 20 mm

Energy (E0) 1.98 GeV 1.98 GeV

Current (I0) 729 mA 632 mA

Bunch length (σt) 12 ps 17 ps

Bunches per train (Nb, fill A/fill B) 190/95 190

Bunch spacing (fill A/fill B) 1.4/2.8 ns 1.4 ns

Bunch trains stored 3 2

Betatron tune (horiz./vert.) 27.2616/11.1357 11.465/5.388

Synchrotron tune (Qs) 0.003496 0.0114

Momentum compaction (α) 0.000295 0.002

Damping times (horiz./vert./long.) 4.85/5.09/2.61 ms 5.85/5.81/2.89 ms

RF voltage 1.07 MV 1.516 MV

RF frequency (fRF) 714 MHz 714 MHz

Number of RF cavities 3 4

Total energy loss/turn 777 keV 525 keV

β at RF cavities location (horiz. and vert.) 6 m 6 m

MDR PDR

Harmonic number (h)          714                550
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…and Fundamental Formulas
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Basics of Mode Coupling

fRF

fRF/2

λ1 λ20

λA =0

0

λB = λ1+ λ2

λA λB

Fill function Fill spectrum Eigenvalues

f

f

ft

t

t

(fully coupled modes)

(partially coupled modes)

(linear combination of λ1 and λ2 < λ1 + λ2)
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A theorem about fractional fills

• If a uniform fill is stable, adding one gap cannot
make it unstable.

• This is still valid for (few) more gaps unless the
impedance function is pathological.

Instead of solving the h ×h system, we can just make some considerations on
“equivalent” fills, since we are interested in stability and not in the exact
growth rates.
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PDR and MDR fill spectra
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With two bunch trains , the
PDR spectrum is quite close to
the ideal, uncoupled spectrum.
The MDR spectrum is also very
similar.
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